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Savage, 1990; Kamien and Vincent, 1990; Panzar and Savage, 1987; Stiglitz and Arnott,
1987; and Braeutigam, 1987) as well as empirical treatment of the notion that airlines have
moved sharply to control costs (for example, Card ( 1986, 1989) on the decline of wages
paid airline employees since deregulation ). A key component of quality of service is aircraft
safety.

There is direct evidence that aggregate safety has not declined since deregulation (see
Rose ( 1992) and Morrison and Winston ( 1988 )), and that airlines’ safety records were not
affected by profitability either before (see Golbe ( 1986)) or after (see Rose ( 1990)) dereg-
ulation. Borenstein and Zimmerman ( 1988) provide evidence that the reverse does not
hold: airlines experiencing accidents do suffer financial losses, although not nearly at the
level of the social costs.

These empirical studies share one important feature: The number of observations in
which an accident is present is quite small. Statistical analysis of rare events is problematic,
and it is not inconceivable that results could be driven by airlines’ “lucky” or “unlucky”
draws. One way of getting around this difficulty is to analyze the actions taken by airlines
to enhance safety, and one such action is aircraft engine maintenance.

This article looks at two questions: Did deregulation lead airlines to reduce engine
maintenance effort? And if there was a reduction in effort, has it led to deterioration in
engine performance?

This study differs from previous ones in two important ways. First, this article is largely
an analysis of “effort” as opposed to “performance.” I measure effort by the preventive
maintenance performed on aircraft engines. Engine maintenance occurs quite frequently,
and because its purpose is to prevent engine failures and, hence, accidents, analysis of
maintenance effort is a valid approach to the study of safety.

Second, this study employs a unique and rich dataset not previously available to re-
searchers. Data were collected at the level of an individual aircraft engine, enabling an
examination of micro-level decision making in the maintenance process. The data take the
form of 42 complete engine histories covering the years 1964 to 1988 provided by Pratt &
Whitney, Inc.2 A major advantage of this dataset is the relatively large number of events to

be analyzed (engine shutdowns and shop visits) compared to the infrequent occurrence of
accidents and what the National Transportation Safety Board terms “incidents” analyzed
in the other studies.

2. Background

■ Before describing the data, methodology, and results, it is worthwhile to discuss aircraft
engines, maintenance, and regulations briefly. A mechanic described the operation of a jet
engine succinctly as “suck, squeeze, bang, and blow.” 3 This expression offers a fair repre-
sentation of major engine processes: Air is pulled into the engine, compressed, and mixed
with fuel, The explosion of this mixture and its exhaust propels the plane forward. The high
temperatures and intense pressures take a heavy toll on the engine’s components, and
maintenance and repair can be costly (Table 1). Much of the cost is labor.

The decision to remove and overhaul an engine depends heavily on information gathered
by both the pilot and the ground crew during service checks. Some critical measures, like
oil pressure, are readily observable from the cockpit. The ground crew collects other data,

2 Because I wished to address the question of how deregulation affected the treatment of individual engines,
the sample was drawn from engines whose service lives covered a substantial period both before and stir deregulation.
1 argue below that the fact that the engines are overhauled means that they are “renewed” at each shop visit and
may therefore be considered new enginey this renewal puts the engines on an approximate y equal footing with
other renewed engines,

3 Personal interview with Charlie Walters and Roy Fife, aircrafi mechanics with Federal Express, Inc., Madkon,
APril 9, 1988.
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TABLE1 MaintenanceCost per Shop Visit

Cost per Visit
(Thousands of Dollars)

Type of Visit JT8D JT9D

Full engine refurbishment 225-325 500-800
Hot section refurbishment 125-175 300-400

Miscellaneous repair 50-100 100-150

Source: Pratt & Whitney, Inc. Costs reflect parts and labor.

such as horoscope readings. In addition, the engine may encounter foreign object damage
(FOD ), particularly from birds or large hailstones, which may necessitate an engine removal.
Finally, an engine may be removed as part of a progressive maintenance program or for
engine rotation.4

Federal regulations govern all aircraft engine-related matters.5 An air earner wishing
to perform service on its own aircraft must meet essentially three sets of standards. First, it
must meet the standards set forth in the manufacturer’s Federal Aviation Administration
(FAA )-approved maintenance manuals. Second, it must meet the standards of its own
FAA-approved progressive inspection and maintenance program. Finally, it must meet the
additional airworthiness standards set forth in the CFR (Code of Federal Regulations), as
well as the regulations concerning records, personnel, and working conditions. The air
carrier has some latitude in determining its inspection and maintenance program, although
once the airline has committed itself to a specific program it cannot deviate from it. Thus,
if the maintenance regulations were binding before deregulation, deregulation should not
have affected the airlines’ standards.

Many union officials and airline employees insist that the story is more complicated,
however. They allege that since the advent of deregulation the incentives to cut costs have
driven airlines to hire less-qualified applicants for critical positions, including pilots and
line mechanics.6 It should be noted that these personnel must still meet the criteria set forth
in the CFR; but primary sources argue that formerly there had been a great deal of slack
in the constraints, whereas now there is very little margin between applicant qualifications
and the minimums specified in the CFR.

When an engine fails, the consequences are unlikely to be serious, because the aircraft
has at least one other engine and can readily perform an emergency landing with the re-
maining engine (s). Typically, a pilot experiencing an in-flight shutdown will continue to
the scheduled destination, unless the shutdown occurred during or shortly after takeoff or
there are no qualified mechanics at the destination. Of course, the cost of more than one
engine failing on a given aircraft is self-evident and has been quantified (at least indirectly)
by Borenstein and Zimmerman ( 1988).

Obviously, a major objective of airline engine maintenance is to minimize the chance
of engine failure. To some extent, the probability of failure is outside the airline’s control;
a typical exogenous problem is that of FOD. However, engine shutdowns also may result
from faulty maintenance or from a pilot’s decision based on instrument readings in the
cockpit (which sometimes turn out to be false, explaining how an engine may have more

4 Personal correspondence with Edward R. Cowles, Public Relations Director, Pratt & Whitney, Inc.
5Most of the pertinent regulations are Parts 21, 33, 43, and 145 in Volume 14 of the Code of Federal

Regulations (CFR ).
6 One such allegation was made in the ABC News Nighlline television program, Show-# 1798, April 13, 1988,

by a Continental Airlines mechanic.
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than one shutdown during one shop visit cycle ). The engine work in this dataset also reflects
the installation of upgrade kits, designed to improve an engine’s performance.

3. Preliminary analysis

■ Survival plots (see Kalbfleisch and Prentice ( 1980)) in Figure 1 suggest that aircraft
engines on average are allowed to remain in operation for more engine hours before being
overhauled since deregulation than before.

All things equal, we might expect an airline that overhauls engines more frequently to
have a better safety record than its rivals. Thus, Figure 1 might initially excite an observer’s
concern. Indeed, the data for both JT8D and JT9D 7engines fail the log-rank and generalized
Wilcoxon tests for homogeneity of prederegulation and postderegulation data.

We can also observe the distinction between regulated-era and deregulated-era data in
the distributions of operating hours, or “hard time,” between shop visits, shown in Fig-
ure 2. Engines in both categories appear to have much longer shop visit cycles on average

FIGURE 1
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7JT8D engines have approximately 16,000 pounds of thrust and are generally the engine of choice on
Boeing 727 and McDonnell-Douglas DC-9 aircraft. JT9D engines have 41,000 pounds of thrust and are often used
on Boeing 747s.
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FIGURE 2

FREQUENCY DISTRIBUTION
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in the deregulated era. A X2test on the frequencies for each jet type rejects the null hypothesis
that the regulated and deregulated samples are drawn from the same distribution.8

Table 2 shows that the average number of operating hours between overhauls roughly
doubled (from over 2,100 prederegulation to about 4,400 postderegulation ) for JT8D engines
and more than doubled (from about 1,300 prederegulation to about 3,500 postderegulation )

for JT9D engines. A t-test reveals statistically significant differences between the means.g A

relevant question is whether the longer shop visit cycles in the deregulated era justify concern

or whether they represent improved technology’s effect on engine wear and tear. Because

the engine histories record each technological upgrade implemented on each engine, my

dataset can answer this question.

4. Parametric analysis of shop visit cycles and shutdowns

■ Model specification. In this parametric analysis, I start by assuming that operating hours
(t) between shop visits are distributed as two-parameter Weibull ( ~i, a), where Mand a

*For JT8D and JT9D engines the values of the test statistic are 228.7009 and 142.383, respectively, with
associated degrees of freedom I 1 and 8 and tail probabilities 1.545 x 10’9 and 7.577 X 10-27. The formula for the
test statistic is given in the Appendix.

9 The t-statistics are 6.3789 and 10.7594 for the JT8D and JT9D engines respectively, where the alternative
hypothesis is that the deregulated means are greater than the regulated (tail probabilities for both statistics are

computed to be less than 10-4).
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are, respectively, the location and scale parameters. Subscript i indexes a “renewal’’ -that

is, a shop visit cycle. This particular parametrization of the Weibull maximum likelihood

estimator is due to Lancaster ( 1979).

Letting t[ denote the ( hard) time between shop visits i – 1 and i, the Weibull probability
density function is given by’0

~(t,) = IZ,OZ;-l exp(–p, t;) (1)

with

#i = exp(~’xi), (2)

where xi denotes the vector of covariates and ~ denotes the ( unknown ) vector of parameters. 11
The data xi contain information on prior shutdowns, prior shop visit rates, engine upgrading,
“intensity” of operation, and airline operator. Based on the dates of events, shop visit cycles
are classified as occurring during the regulated era or the deregulated era ( post- 1978), which

12 Table 3 givesthedefinitions, means>enables another dummy covariate for deregulation.
and standard deviations for continuous variables. The sample log-likelihood is obtained by

T.ABLE3 VariablesUsed

HRSLSV
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DC9

SDDUJ4

EL 17ME

INTENS

7/7A/7B
IJCN

15ACN
17CN
9/9A

7CN
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7ASPCN
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——

——
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—
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Thousand engine hours since last shop visit; also referred to as “hard time.”
Mean = (3.05, 2. 18); Standard Deviation = (2.87, 2. 14).

Prior shop visit rate; the number of prior shop visits divided by thousands of engine hours.
Mean = (5.38, 10.38): Standard Deviation = (6,57, 10.69).

Deregulation dummy; I after January 1978, 0 before.

Airline indicators; there are seven airlines represented in the sample.

Dummy for McDonnell-Douglas DC-9 aircraft; some JT8D engines were installed on DC-9S,

Dummy to indicate the existence of a shutdown history since the last shop visit.

Elapsed time; calendar time in months since last shop visit. This time is distinguished from
“hard’ time, since it does not necessarily reflect hours of usage. Mean = ( 13.92, 7.9 1):
Standard Deviation = (11 .28, 6.61).

“Intensity”; thousands of engine hours since last shop visit divided by elapsed time since last
shop visit, Mean = (.21, ,25): Standard Deviation = (.21, 11),

Model number dummies representing upgrades in JT8D engines.

Model number dummies representing upgrades in JT9D engines.

Note: Means and standard deviations are given in the order (JT8D engines, JT9D engines).

‘0 This model is popular in unemployment duration studies; see also Heckman and Borjas ( 1980), Heckman
and Singer ( 1985), and Flinn and Heckman ( 1982),

II Anv function of pmameter~ and data that guarantees a positive location parameterwillWork.Theexponential

form given ‘in equation (2) is the function of choice for most empirical work.
12,+n alternative approach is to separate the sample into regulated years and um’ewlatedwan and anahze

the differential effect of covariates on the hazards for the two periods. Results from this approach are qualitatively
similar but for brevity are not reported here (they are available from the author),
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For both engine types, the results indicate an increasing hazard rate ( a > 1), and at a
significance level of 1070or less. I9 That ~e~ult reflects the essence of preventive maintenance>

which will cause an engine to eventually be called into the shop after enough operating

hours have passed even if the engine is within airworthiness minimums.

Whether the engine experienced one or more shutdowns (indicated by the shutdown

dummy ) during the time of operation had no significant effect on the process. This result

is somewhat counterintuitive and may reflect that random factors in the shutdown process

prevail over maintenance-related factors, I have accordingly estimated a logh model that

purports to explain engine shutdowns, to be discussed below.

As we can observe in Table 2, the average number of operating hours from a shop visit

to the first engine shutdown has increased for both engine types since the regulated era.

Once again, we are confronted with the question of whether this change is caused by the

covariates observable in the data or whether deregulation has had an influence.

Table 5 gives binary logit results for monthly in-flight shutdowns as a function of a

constant, hours since last shop visit, shop visit rate, deregulation dummy, and airline and

engine model dummies. Although the number of shutdowns per operating hour would seem
to have gone down (because the number of hours from engine removal to first shutdown
has increased ), the deregulation coefficient is negative and significant only for the JT8Ds
and insignificant for the JT9Ds. These results suggest that the increased length of the shop
visit cycle after deregulation has at least not led to a decline in reliability for these engines,
when in-flight shutdowns are the proxy for (the inverse of) reliability.

I considered the possibility that because shop visit rate has declined since deregulation,
the correlation between the two variables makes the estimates less precise.20 Thus, I re-
estimated excluding the shop visit rate. Table 5 shows that coefficient estimates are fairly
stable (with the exception of the 17CN and 9\9A dummies, which are a very small fraction
of the dataset ), but the qualitative results on deregulation remain the same: it led to a
significant decline in the likelihood of engine shutdown for JT8D engines and has a statis-
tically insignificant but negative effect for JT9D engines. Although data are not available
for other potential reliability indicators, such as average exhaust pressure ratios, exhaust
gas temperature readings, and horoscope results, the evidence seems to suggest that engine
reliabilityy has either remained constant or improved since deregulation. This result seems
even more compelling if we note that, as Table 2 shows, intensity of use (or at least hours
of operation per month) have increased in the same period.

Both engine types have strongly significant constants, due to the large random com-
ponent in engine shutdowns (events beyond the operators’ control). Surprisingly, neither
engine type shows a significant effect for hours since last shop visit.z 1However, in the case
of JT8Ds, higher shop visit rates significantly decrease the probability of a shutdown.

❑ Model diagnostics. D’Agostino, Belanger, and D’Agostino ( 1990) describe the
D’Agostino-Pearson omnibus test procedure for detecting deviations from normality based
on sample skewness and kurtosis. The OLS models presented in Table 4 strongly reject
normality. **,231 performed the BOX.COX transformation ( BC ) on the dependent variable,

hours of operation between shop visits, where

19 since I ~~t]m~ted ]n (a) rather than a itself, the standard errors for a are cOmputed using the delta methOd

(see Bdlingsley ( 1979)).
ZOAlthough it might at first appear that the shop visit rate and hours S’hCe laS’t shop visit coefficients maY

sutTer from endogeneity bias, in fact this is not so, because the data at time t are computed from the engine’s Iustory
at time [ up to but not including the current period.

2 I This result is ~0~ due to ~or~elatio~ between shop visit rate and hours Since lmt shop visk correlation

coefficients are –. 19 and – .05 for JT8D and JT9D engines, respective y.
u The test statistics are 63.08 and 247.09 for the JT8D and JT9D regressions, resPcctivelY (~il PrObabilities

are both less than 10’4 ).
m Vuong ( 1989) has proposed a model selection criterion for nonnested models that is a vtiation on a
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{

Xc-l
e+o

Bc(x; e) = e

in (x), e=o”

Performing a grid search for the e that maximizes the log-likelihood of the sample under
the assumption of normality did not alter the significance of the D’Agostino-Pearson sta-
tistic 24Thus the OLS results, while lending credence to the results because the technique
does provide the best linear predictor, cannot be regarded as efficient estimates.

Lancaster ( 1979) noted that the inclusion of more explanatory variables in his model
caused the value of a to rise. That observation is consistent with my finding for both engine
types, and quite possibly the conclusion that he draws— heterogeneity caused by omitted
variables may be responsible for the nonconstant hazard rate—may apply. Lancaster ( 1990 )
provides Jests for unobserved heterogeneity and a nonmonotone hazard. The models do

25 however, there is strong rejection ofnot seem to suffer from unobserved heterogeneity;
the monotone hazard specification.26

One way to address the nonmonotone hazard problem parametrically is to estimate a
generalized gamma model, which fits an additional shape parameter. The generalized gamma
log-likelihood is

N

L= ~ {ln(a)+m~’xi -t-(am– l)ln(~i) –y~e~’x’ –ln (r’(m))},
i- I

where m is the additional shape parameter (note that if m = 1, the model is identical to the
Weibull ). Results from this specification are reported in Table 6; the results reject the null
hypothesis that m = 1, and the likelihood ratio test rejects a restriction of setting m to unity.
Other results are qualitatively similar to the Weibull and OLS results.

A possible specification error in the logit model is unobserved heterogeneity .27 There
appears to be no omnibus specification test for unobserved heterogeneity in the logit frame-
work, so I considered a possible source arising from the engines themselves. The likelihood
ratio test did not reject the null hypothesis that the coefficients of the engine fixed effects
are all zero for both JT8D and JT9D engines.28

5. Conclusion

■ The dataset containing complete Pratt & Whitney aircraft engine histories exhibits a
clear distinction between maintenance behavior before and after airline deregulation. An

likelihood ratio test, The formula for the test statistic in this case is given in the AppendLx. The &ta overwhelmingly

reject the null hypothesis that the Weibull and OLS models are equivalent in favor of the Weibull being better.
The Vuong statistic for the unrestricted (intensity included as a covanate ) JT8D model is 4.958, with associated
significance 3.6 X 10’7. The Vuong statistic for the unrestricted JT9D model is 4.459, with associated significance
4.1 X 10-’. For the restricted case, Vuong statistic vahres are 6.403 and 7.211, both with significance 7.7 X 10-7,
for JT8D and JT9D models, respectively.

24“Optimal” EOX-COXparameters ranged from .2077 to .3375 for the four specifications in Table 4; DAgostino-
Pearson statistics ranged from 28.43 to 60.21, with associated tail probabilities less than 10’4.

2s The normaIIy distributed, fight.tailed test statistic is –4.0024 (tail probability .9999) for JT8D en.@res and

–9.47 16 (tail probability 1.0000) for JT9D engines.
M Test Statistic values for JTSD and JT9D models are 496.1399 and 4051.5056, respectively, with a~ociat~

tail probabilities both less than 10‘“.
27 Another ptentia] problem is heteroskedasticity. Davidson and MacKinnon ( 1984 ) proposed a hetero-

skedasticity test for a probit model in which the heteroskedasticity arises in the underlying ( normal ) latent variable
model. However, as Greene ( 1990) points out (and the authors also suggest), their test does not apply to a Iogit
framework because the logit model is not derived from a latent variable fkamework (except in the special case of
random utility models ).

28The likelihood ratio test statistics for the JT8D and JT9D engines are 25.67 and 10.59,re5PeCtive1Y,with

associated tail probabilities .1771 and .9562, Degrees of freedom in both cases are 20.
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TABLE6 GeneralizedGammaResults
DependentVariable Engine Hours Between shop Visits

JT8D JT9D JT8D JT9D
Variable Engines Engines Variable Engines Engines

Primary variables

Constant –.5601
(.6 122)

–.0565

Shop visit rate .0608
(.0112)
.0061

Deregulation dummy –.4551
(.2539)

–.0538

Shutdown dummy –.7703
(.4145)

–.1295

Intensity –16,~54]

(3.3783)
– 1.6392

Engine upgrades

7/7A/7B

15CN

l.iACN

17CN

9/9A

–,9!86
(.2672)

–.0874

– 1.0267
(.4350)

–.1816

–.8450
(.8200)

–.1514

– 1.4990
(.7328)

–.3202

–.1132
(2,0380)
–.0129

3.5312
(,4627)
.0751

.0018
(.0003)
3.7e-5

–1.0612
(.4137)

–.0439

–.7043
(.3257)

–.0587

-29,7467
(3,5222)
– ,6326

7CN –.5440
(.2660)

–.0276

Engine upgrades (continued)

7ACIV

7ASPCN

Airline dummies

AL2

AL3

AL4

AL j

AL6

AL7

DC9

a

m

–Log-likelihood

Degrees of freedom

-.4913
(.4152)

–.0176

–.0902
(.9381)

–. f)()~9

–,5489 .3908
(.3427) (.3983)

–,0815 –.0105

–.5572 .1653
(.4082) (.3187)

–.0828 .0005

–.8388 .0413
(,4787) (.3140)

–,1468 .0007

–.2253
(.4856)

–,0280

.0824
(.4504)
.0075

,6506
(,4415)

,0071

,7434
(,4066)
,0122

2.5661 3.2195
(,3430) (.3274)

.3474 .2820
(.0626) (.0379)

723.21 685.75

367 494

Notes: Standard errors in parentheses. Hazard derivatives under standard errors,

OLS regression equation as well as a form of one of the standard-duration models used to
capture the effects of other covariates suggests that deregulation is a significant factor in
predicting the length of an engine’s shop visit cycle. A logit analysis to predict the probability
of an engine shutdown uses the same covanates but suggests that deregulation does not
affect that likelihood.

There is support for mechanics’ claims that the decline in quantifiable maintenance is
a result of deregulation in the airlines. After controlling for improvements signalled by
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model upgrades in the engines, heterogeneity in airline maintenance practices, unobserved
airline heterogeneity, heterogeneity in aircraft types, and the incidence of shutdowns, de-
regulation seems to have resulted in a lower probability that an engine gets a shop visit.
This finding is robust to inclusion of usage intensity as an explanatory variable; however,
the intensity variable is a noisy signal that may not adequately proxy the desired effect.
Despite the increased time between engine overhauls, there is no evidence of reduced engine
reliability as measured by in-flight shutdowns, suggesting that the counterarguments of
airline managers may also be correct: safety performance has not suffered since the advent
of deregulation. These results verify machinists’ union claims that maintenance policies
have substantially changed in the deregulated environment, but also back corporate claims
that reliability has not suffered.

One way of reconciling these conflicting views is to recognize that quite possibly, new
maintenance policies are at variance with the older notions of good maintenance practice—
thereby leading to the unions’ discomfort-but are in fact optimal from the safety standpoint.
Some empirical support for this interpretation is found in Kennet ( 1988 ), where an estimated
structural model (based on Rust ( 1987)) incorporating a dynamic programming model of
maintenance decision making into a statistical model suggests that maintenance prior to
1978 was not dynamically optimized but was optimal after 1978.

The results strengthen existing literature on air safety in the deregulated environment,
which has unanimously found little cause for concern, but provide the extra reassurance
that comes from microdata at the level of the decision makers.

Appendix

9 The X2 statistic in footnote 8 is computed by determining the expected frequency for each of k ranges of
values under the null hypothesis that the regulated-era distribution would apply to the deregulated era, fij, and
inserting the observed frequencies, O,, from the deregulated era in tbe following formula (Kenkel, 1989 ):

~, = <. (Oj– E,)z
&

,--1 E,

Degrees of freedom are then k – 1.
n n

The test statistic for footnote 23 is V(f~, /$) = n-1/2( Z ~~[b) – Z lY(?))/~, where 1: is the vector of
,=, i=1

observation log-likelihoods evaluated under the Weibull likelihood function assumption at ~, the associated maximum
likelihood estimator for the model; 1$ is the vector of observation log-likelihoods evaluated under the competing
Gaussian normal functional assumption at ?, its associated maximum likelihood estimator; n isthe number of
observations 1~( o) and /~(. ) are observation log-likelihoods, and

{
J*=: \ {r(g) –1;(+)}2– ::1[r(~) –1:(?)1]2.

!– ,–

Vuong ( 1989 ) shows that this statistic is asymptotically standard normally distributed
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